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SUMMARY

Two-dimensional incompressible jet development inside a duct has been studied in the laminar flow
regime, for cases with and without entrainment of ambient fluid. Results have been obtained for the flow
structure and critical Reynolds number values for steady asymmetric jet development and for the onset
of temporal oscillations, at various values of the duct-to-jet width ratio (aspect ratio). It is found that at
low aspect ratios and Reynolds numbers, jet development inside the duct is symmetric. For larger aspect
ratios and Reynolds numbers, the jet flow at steady state becomes asymmetric with respect to the
midplane, and for still higher values, it becomes oscillatory with respect to time. When entrainment is
present, the instabilities of asymmetric development and temporal oscillations occur at a much higher
critical Reynolds number for a given aspect ratio, indicating that the stability of the jet flow is higher with
entrainment. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Jet flows are encountered in a wide variety of applications, such as gas turbine combustors,
industrial burners, ejector systems, rocket nozzles, etc. From the fundamental point of view, jets
exhibit a wide range of intriguing flow features, such as oscillatory instabilities, asymmetric
development inside confined spaces, entrainment and mixing with ambient fluid, etc. In the present
work, the flow features and entrainment characteristics of confined laminar jets are investigated.
Analytical solutions for free jet flows are available, based on the self similarity of velocity field
[1]. However, these solutions are valid only far away from the jet inlet, and in most applications,
the near-field development holds the key to important features of the jet flow. Therefore, the
near-field development of a jet has been the subject of a lot of research in recent years.

The flow features of confined laminar jets can be analysed from two view points. For large
aspect ratios (duct width/jet width), the flow development of a confined jet is akin to that of
a free jet and temporal flow oscillations are observed at high Reynolds numbers, in such cases.
On the other hand, for low aspect ratios, asymmetric flow development occurs similar to that
of duct flow in the vicinity of a sudden expansion. Thus, understanding the flow behaviour of
confined jets at various aspect ratios is important for estimating its effect upon other associated
phenomena, such as entrainment and mixing.
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The stability of 2D free jets was studied experimentally by Sato [2] and Sato and Sakao [3].
Theoretical analyses for axisymmetric free jets were carried out by Batchelor and Gill [4] and
Cohen and Wygnanski [5]. The bifurcation in flow solution for a two-dimensional duct with
sudden expansion has been analysed theoretically by Cliffe and Greenfield [6], Sobey and
Drazin [7] and Battaglia et al. [8]. Experimental observations for such flow configurations have
been carried out by Durst et al. [9], Sobey [10] and Fearn et al. [11]. These experimental and
theoretical studies have confirmed the asymmetric development of flow with respect to the
midplane beyond a critical flow Reynolds number. The variation of critical Reynolds number
for bifurcation with aspect ratio has been investigated in detail by Battaglia et al. [8]. These

Figure 1. Geometry and boundary conditions for confined and free jets: (a) non-entraining confined jet,
(b) entraining confined jet, (c) free jet.
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Figure 2. Staggered grid structure.

authors have also validated their numerical predictions by comparing with the experimental
data of Fearn et al. [11].

Although many experimental studies have been conducted, the available literature on
theoretical simulation of confined jet flows is some what limited. The transition of confined
laminar jets from steady asymmetric flow to that of a temporally oscillating flow for larger
aspect ratios, has not yet been considered. Furthermore, the case of an entraining jet located
at the mouth of a duct, which occurs in several practical applications, has not been studied. In
the present study, a time marching incompressible flow solver has been applied for simulating
the flow features of both entraining and non-entraining jets over a wide range of aspect ratios.

2. MATHEMATICAL FORMULATION

An incompressible two-dimensional laminar jet is considered. For the sake of simplicity, the jet
is assumed to be isothermal and having the same density as the ambient fluid. Also, the
velocity profile at the jet inlet is taken as uniform. The dimensionless continuity and
momentum equations for the 2D flow problem are given by
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with the overbar indicating a dimensional variable and u0, dj denoting the uniform jet velocity
at nozzle exit and the jet width, respectively.

The boundary conditions needed for the numerical simulation have been prescribed,
depending upon the problem under consideration. For a confined jet inside a closed duct
(without entrainment), the following dimensionless conditions have been enforced, as shown in
Figure 1(a).
At jet inlet (x=0), u=1, 6=0.
At the duct walls (y=9ymax), u=0, 6=0 due to no-slip.
No midplane symmetry has been assumed, giving allowance for asymmetric flow development
beyond the critical Reynolds number.
At downstream boundary (x=xmax), the condition of zero second-derivative has been applied
for velocity components. This condition implies a linear extrapolation of the concerned flow
variable at the boundary from the interior solution. Thus,

(2u
(x2=

(26

(x2=0 at (x=xmax).

The static pressure at the exit section is prescribed as the ambient pressure p�.
When the duct is open, entrainment is possible due to ejector action near the mouth of the

jet orifice. For the entraining region, the boundary condition has been incorporated, based on
the Bernoulli equation. If p� is the ambient pressure, the static pressure at the inlet section
outside the jet is prescribed as

p=p�−
1
2

rV2,

where V is the magnitude of the total flow velocity (Figure 1(b)). All the other boundary
conditions are similar to those for the non-entraining case.

For comparison with available experimental work, the case of free jet flow has also been
simulated. In order to simulate the free jet, the ratio between the widths of the solution domain
and the jet has been taken to be very large (of the order of 250). In addition, the pressure along
the side surfaces of the solution domain has also been prescribed as ambient pressure and the
velocities, u, 6, are extrapolated from the interior solution (Figure 1(c)), allowing for
entrainment.

Subject to the above boundary conditions, the governing equations have been solved by a
finite element scheme based on the projection method. Transient, as well as steady state results
(if available), have been obtained for a range of Reynolds numbers in the laminar regime and
for different aspect ratios (D/dj). A brief summary of the numerical solution procedure
employed in the present work is described in the next section.
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3. NUMERICAL SOLUTION PROCEDURE

The Galerkin weighted residual method has been applied for formulating the discretised
equations. For the sake of brevity, the discretisation procedure has been shown below, only for
the x-momentum equation. Thus,&&
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where Ni are the shape functions used for interpolation, n is the total number of velocity nodes
and V is the solution domain. Now, integrating the viscous terms by parts to obtain the weak
formulation and applying mass lumping to the transient term, the simplified form of the
x-momentum equation is given by,

Figure 3. (a) Validation of numerical predictions with experimental data for a free jet flow; (b) validation
of present predictions for confined jet flow with results in literature.

Figure 4. Typical mesh employed for computation (only 30% of total length shown).
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Figure 5. Effect of aspect ratio on flow structure at Re=100 for non-entraining flow; (a) AR=4,
(b) AR=8, (c) AR=20.
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For converting the above equation into matrix form, the variables u, 6 and p are interpolated
within each element as

u=% Njuj, 6=% Nj6j, p=% Mjpj, (6)

where Nj and Mj are the shape functions used for velocity components and pressure, respectively.
In the present study, four-noded quadrilateral elements have been used for velocity. The pressure
is treated as a constant within each element for the momentum equations, while it is interpolated
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using a bilinear form (four nodes) during the solution of continuity equation. The pressure
nodes are staggered with respect to the velocity nodes (Figure 2). The final form of the finite
element matrix equations corresponding to the application of x and y-momentum principles at
each node are given by,

[MD]{u; j}= − [C ]{uj}− [D ]{uj}− [Sx ]{pj} (7)

and

[MD]{6; j}= − [C ]{6j}− [D ]{6j}− [Sy ]{pj}, (8)

where MD, C and D are the lumped mass, convective and diffusive coefficient matrices,
respectively. Also, Sx and Sy are the coefficient matrices for the pressure gradient terms.

The pressure terms in Equations (7) and (8) are handled implicitly, for updating pressure by
a correction procedure similar to that in the SIMPLE family of algorithms (Mukhopadhyay et
al. [12] and Sarma et al. [13]). From Equation (7), the updated u velocity after a time step of
Dt is obtained as

[MD]{uj
n+1}= [MD]{uj

n}−Dt [Cn]{uj
n}−Dt [D ]{uj

n}−Dt [Sx ]{pj
n+1}. (9)

If a guess pressure field p* is used in place of the correct pressure field pn+ l, then a guess
velocity field u* is obtained through the expression,

[MD]{uj*}= [MD]{uj
n}−Dt [Cn]{uj

n}−Dt [D ]{uj
n}−Dt [Sx ]{pj*}. (10)

Subtracting Equation (10) from Equation (9), one obtains

[MD]{u %j}= −Dt [Sx ]{p %j}. (11)

Similarly, it can be shown that

[MD]{6%j}= −Dt [Sy ]{p %j}, (12)

where the velocity corrections (u %, 6%) and the pressure correction, p %, are defined as

u %=un+1−u*, 6%=6n+1−6*, p %=pn+1−p*. (13)

The continuity equation can now be written in matrix form as&&
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dx dy= [CTx ]{uj}+ [CTy ]{6j}=0. (14)

It should be noted, however, that the continuity equation (14) will be satisfied exactly by the
correct velocity field only, and the guess velocity field (u*, 6*) will leave behind a mass residue.
Thus, for the ith pressure node (continuity cell)

[CTx ]{uj*}+ [CTy ]{6 j*}={Resi}, (15)

and

[CTx ]{uj
n+1}+ [CTy ]{6 j

n+1}=0. (16)

Subtracting Equation (15) from Equation (16), one obtains

[CTx ]{u %j}+ [CTy ]{6%j}= −{Resi} for the ith node. (17)

Substituting for the velocity corrections u %j and 6%j, from Equations (13) and (14), the final form
of the continuity equation becomes

[[CTx ]{Sx}+ [CTy ]{Sy}]{p %j}=
1
Dt

[MD]{Resi}. (18)

The overall solution algorithm for the problem can now be stated as follows:

1. Assume a guess pressure field p* and solve for the guess velocities u* and 6* at each node
using Equations (7) and (8).
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2. From the guess velocities u* and 6*, evaluate the residue (Resi), for the continuity cell
surrounding each pressure node.

3. Solve the pressure correction equation (18) to find p % at each pressure node.
4. From Equations (11) and (12), find the velocity corrections u % and 6% at each node.
5. Finally, calculate the correct velocity and pressure as

pn+1=p*+p %, un+1=u*+u %, 6n+1=6*+6%.

The pressure correction equation was solved iteratively by the tridiagonal matrix algorithm
(TDMA) with an underrelaxation factor of 0.5, and the velocities were updated iteratively
within a time step Dt to provide some amount of implicitness to the velocity solutions also. The
above procedure for time marching was carried out for several time steps, until a steady or
oscillatory solution evolves. Convergence of the numerical solution was monitored in two
different ways. The differences in the solution variable values were verified to converge within
a tolerance of 10−4 at each node over 100 time steps. In addition, the global norm of the
continuity residue, (� Resi

2)1/2, was verified to converge within 10−3. For some computational
runs, the above convergence criteria for steady solution could not be satisfied. In such cases,
the transient variation of the flow solution was obtained for a few cycles, to confirm the
oscillatory nature of the flow behaviour. The typical non-dimensional time steps employed in
the study were of the order of 10−4.

4. VALIDATION OF THE NUMERICAL SCHEME

Since the present study is concerned with the flow structure of free and confined jets,
comparisons have been made with available results in the literature for these cases. For free jet
flow, the experimental results of Sato and Sakao [3], have been considered and compared with
the predictions of the present scheme in Figure 3(a). The velocity profile at the jet inlet has
been given as parabolic for matching with experimental conditions. It is observed that the
predicted radial profiles of axial velocity agree fairly well with the experimental data at two
different axial distances.

For validating the predictions for confined jet flow, comparisons with the numerical results
of Battaglia et al. [8] have been presented in Figure 3(b) for the axial velocity profile. It is
found that the agreement between the two sets of results is fairly good. A numerical mesh with
512×221 points has been employed for these predictions, with a parabolic inlet velocity
profile, as in the study of Battaglia et al. [8]. For a given ratio of duct-to-jet width, the
predicted critical Reynolds number value for bifurcation of flow solution was found to be
slightly different from the value obtained by the above authors. For instance, the axial velocity
profile predictions here at a Reynolds number of 190 agree with those reported by Battaglia
et al. [8] for a Reynolds number of 187. But for this difference in Reynolds number, the flow
features of asymmetric jet development inside the duct were found to be virtually identical. The
minor deviations in the results of the present study and those of the earlier investigations can
be attributed to the differences in the numerical scheme and the round-off/discretisation errors.

To illustrate the grid-independence of the predicted results, grids with 111×111, 256×111
and 512×221 points have been considered for simulating duct flow in the vicinity of a sudden
expansion with AR=3.0 and Re=190. It was observed that the velocity profiles at non-
dimensional axial distances of x/d=2.5, 10 and 20, exhibit a maximum deviation of the order
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of 0.5% for the above grids, indicating the grid-independence of the results. For all the
numerical predictions of the present study, meshes with 10000–100000 grid points have been
employed. A typical mesh employed for the simulation is shown in Figure 4, for about 30% of
the total length considered for computation.

5. RESULTS AND DISCUSSIONS

Flow results have been predicted for a range of aspect ratios and Reynolds numbers in the
laminar flow regime, for both entraining and non-entraining cases. The range of parameters
has been selected so as to illustrate the symmetric/asymmetric jet development in steady state
or the transient jet flow structure in the presence of confining walls.

Figure 6. Effect of aspect ratio on flow structure at Re=200 for non-entraining flow; (a) AR=4,
(b) AR=8, (c) AR=20.
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Figure 7. Effect of aspect ratio on flow structure at Re=400 for non-entraining flow; (a) AR=4,
(b) AR=8, (c) AR=20.

5.1. Streamline patterns

In Figures 5–7, the steady state streamline patterns at different Reynolds numbers and aspect
ratios are depicted for the non-entraining flow situation. In Figure 5(a)–(c), the influence of
aspect ratio on flow structure at Re=100 is shown. It is observed that for a low aspect ratio
such as AR=4, the jet development is symmetric and counter-rotating vortices are seen
immediately after the sudden expansion. The jet decay is rapid and the transition from
jet-to-duct flow occurs in a short distance. At a higher aspect ratio of AR=8 (Figure 5(b)), it
is observed that the steady state jet flow development is asymmetric. Also, the transition from
jet-to-duct flow occurs over a longer distance. For a still higher aspect ratio of 20 (Figure 5(c)),
it is seen that asymmetric flow exhibits a wavy pattern with a larger wavelength and the flow

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 609–626
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development inside the duct occurs over a larger axial distance. A point to be noted here is
that the asymmetry in the flow pattern corresponds to a bimodal steady configuration with the
jet turning upwards or downwards in a random manner, during any computational run.

In Figure 6(a)–(c), the flow patterns at Re=200 are shown for different aspect ratios.
Similar figures for Re=400 are shown in Figure 7(a)–(c). It is observed from these figures that
for symmetric jet flow at low aspect ratios (AR=4), the length of the recirculating eddy
increases with jet Reynolds number. In turn, jet decay and transition to duct flow occurs over
larger axial distances at higher Reynolds number values. In other words, the spread angle of
the jet inside the duct decreases with Reynolds number, as expected. However, for larger aspect
ratios (AR=8 and 20), the asymmetric flow development is influenced mainly by the aspect
ratio and not significantly by the Reynolds number. Thus, for any given aspect ratio, the
patterns are almost identical for all the Reynolds numbers considered in the present study,

Figure 8. Effect of aspect ratio on flow structure at Re=100 for entraining flow; (a) AR=4, (b) AR=8,
(c) AR=20.
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Figure 9. Effect of aspect ratio on flow structure at Re=200 for entraining flow; (a) AR=4, (b) AR=8,
(c) AR=20.

except that the flow development in one case may appear as a mirror image of another (see
Figure 5(c), Figure 6(c) and Figure 7(c)). This is in view of the fact that the jet flow
development has equal probability of existing in any one of the bimodal states for these
asymmetric cases.

The flow patterns for the entraining case are shown in Figures 8 and 9, for the Reynolds
numbers of 100 and 200, respectively. At a low Reynolds number and low aspect ratio (Figure
8(a)), it is observed that recirculating eddies exist at the mouth of the duct, even in the presence
of entrainment. The jet decay and transition to duct flow are seen to occur over a short
distance, as in the case of non-entraining jet flow. The flow development appears to be
symmetric and the jet exhibits more stability. These trends can be attributed to the following
factors. The asymmetric flow development of a non-entraining jet occurs due to the convective
instability of the shear layers at jet periphery. When entrainment is present, momentum is
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shared between the jet shear layer and the ambient fluid, which tends to increase the jet
stability. Therefore, jet development is seen to be symmetric even at larger aspect ratios (Figure
8(b) and (c)), when entrainment is allowed at the mouth of the duct. Another feature that is
apparent from Figure 8(a)–(c) is that the jet decay is slower for a higher aspect ratio; this
illustrates that the higher magnitudes of viscous stresses at lower aspect ratios are responsible
for more rapid decay. In Figure 9(a)–(c), the flow patterns at different aspect ratios are shown
for Re=200. At a low aspect ratio (AR=4), a nearly stagnant zone is seen near the mouth
of the duct and the recirculatory eddies observed at the duct inlet for Re=100 (Figure 8(a))
are not present. For Re=200 and AR=20, it is observed that jet development becomes
asymmetric even in the presence of entrainment. The wavelength of asymmetric spatial
oscillations is higher than those observed for the non-entraining cases.

Figure 10. Variation of axial velocity along the centreline at low aspect ratio.

Figure 11. (a) Variation of axial velocity with distance at high aspect ratio; (b) variation of transverse
velocity with distance at high aspect ratio.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 609–626
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Figure 12. (a) Jet spread for non-entraining flow; (b) Jet spread for entraining flow.

Figure 13. Evolution of flow structure with time for non-entraining flow at Re=500 and AR=20:
(a) t=1.25, (b) t=1.81.

5.2. Velocity decay

The axial variations of u-velocity are plotted in Figure 10 for the entraining and the
non-entraining flow situations, at an aspect ratio of 4. These plots illustrate that the jet decay
is slower at a higher Reynolds number. The decay patterns are similar for the cases with and
without entrainment. However, the velocity values are larger in magnitude when entrainment
is present, as expected. The variations of both u- and 6-velocity components along the centre
line are shown in Figure 11(a) and (b) for the Reynolds numbers of 100, 200 and 400, at an
aspect ratio of 20. The wavy patterns corresponding to the asymmetric flow development are
observed for all the three Reynolds numbers. While the u-velocity variation is almost identical
for all the three cases, the 6-velocity profiles appear as mirror images depending on whether
the jet tilts towards the upper or lower wall of the duct. These results corroborate the earlier
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conclusions that the asymmetric flow pattern is not significantly affected by the Reynolds
number at a given aspect ratio.

In Figure 12(a) and (b), the dimensionless half jet width has been plotted against the
dimensionless axial distance for different Reynolds numbers. Here, the jet half width is defined
as the distance where the u-velocity reaches 50% of its value on the axis. It is observed that at
low Reynolds numbers, the jet width becomes a constant at a shorter distance, implying a
more rapid decay. This feature is observed for both entraining and non-entraining cases. It is
also seen that an entraining jet at low Reynolds number decays very rapidly due to momentum
sharing between the jet and the entrained fluid.

In Figure 13(a) and (b), the variations in jet flow pattern with respect to time for large aspect
ratio (AR=20) and Reynolds number (Re=500) are shown. It is evident that the jet exhibits
temporal oscillations when the Reynolds number is very high for a large aspect ratio. Indeed,
similar features are observed at the aspect ratio of 20 and Reynolds number of 600, for the
entraining jet flow (Figure 14(a) and (b)) Unlike in the earlier cases discussed, these flow
solutions do not converge to a steady state and the jet keeps oscillating with respect to time
as shown in the figures. Occurrence of such temporal oscillations have been observed for
two-dimensional free jets (Fearn et al. [11]) as well.

The critical Reynolds numbers for the onset of asymmetry and temporal oscillations have
been plotted for different aspect ratios in Figure 15(a) and (b) for the non-entraining and
entraining jet situations. It is evident that transient fluctuations start at a Reynolds number
higher than the critical Reynolds number limit for the asymmetry, at a given aspect ratio. It
is also observed that with entrainment, the Reynolds number limits for both forms of
instabilities are higher. It may, therefore, be surmised that entrainment causes jet flow to
become more stable, since momentum exchange occurs between the shear layer of jet and the
entrained fluid.

In Figure 16, the variations in mass entrainment per unit width for a 2 mm jet placed at the
mouth of a duct are shown for various aspect ratios and Reynolds numbers. At lower aspect
ratios, entrainment increases with Reynolds number almost at a linear rate. However, for a
higher aspect ratio (AR=20), the increase in entrainment with Reynolds number is affected

Figure 14. Evolution of flow structure with time for entraining flow at Re=600 and AR=20:
(a) t=1.25, (b) t=210.
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Figure 15. (a) Critical Reynolds number variation for non-entraining flow; (b) Critical Reynolds number
variation for entraining flow.

considerably by the occurrence of asymmetric flow development. This feature is also evident in
Figure 14, since the major part of entrainment is seen to occur only on the side towards which
the jet swings. On the other side, a large recirculatory eddy is observed, which may also
contribute to reduction in entrainment by blocking part of the flow area. For very high
Reynolds numbers, the entrainment also becomes unsteady and acquires a periodically varying
trend. Therefore, the steady mass flow rate through the duct has not been plotted in Figure 16
for high Re.

6. SUMMARY

A theoretical formulation has been developed for analysing two-dimensional entraining and
non-entraining laminar jet flows inside ducts. The predicted results have been validated with
available experimental and theoretical data for free and confined jets. It is observed that at a
fixed aspect ratio, when jet Reynolds number is increased, the flow development first becomes
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Figure 16. Effect of aspect ratio on the level of entrainment.

asymmetric, and for still higher Reynolds numbers, it becomes temporally oscillatory. The level
of entrainment of ambient fluid is severely affected by such instabilities.

APPENDIX A. NOMENCLATURE
AR aspect ratio
b jet half width

duct widthD
jet width at the mouth of the inletdj

shape functionN
static pressurep̄
ambient pressurep�
non-dimensional pressurep

Re Reynolds number based on jet width and inlet velocity
t non-dimensional time

timet(
u0 x-component of velocity at the jet inlet

non-dimensional x-component of velocityu
x-component of velocityū
non-dimensional y-component of velocity6

6̄ y-component of velocity
flow speed (V2=u2+62)V
non-dimensional axial distancex
axial distancex̄

xmax axial distance of the outlet boundary for the solution domain
y non-dimensional lateral distance

lateral distanceȳ
ymax maximum lateral distance from mid plane (ymax=D/2.0)
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Greek symbols

r non-dimensional density
densityr̄
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